(Laser) Inertial Fusion Energy

Cross Beam Energy Transfer depletes the incident laser-beam's power, changing its spatiotemporal distribution, & potentially impacting implosion sphericity

Hot ablated

Non-local, kinetic, heat conduction determines energy coupling, dictates the ablation plasma density profile, and can pre-heat the fusion fuel

Colder ablation front

> Laser intensity inhomogeneities imprint perturbations early in the implosion before the critical surface detaches, increasing hydrodynamic instability-growth

Central Laser Facility, STFC Rutherford Appleton Laboratory, UK. Chair, UK Inertial Fusion Consortium. National Ignition Facility 'ICF Team' Member

Robbie Scott

17th January 2024

- **Fusion fuel has to be heated to 100 million degrees**
- The highest melting-point materials melt at ~3000 degrees
 - How can we hold the fuel in place?

In stars gravity holds the hot fuel in-place

Unfortunately stars are impractical to build on earth!

- Magnetic Confinement Fusion:
 - Fuel is so hot it turns into a plasma
 - Magnets hold the plasma in-place

Tokamaks are like a bent bottle, with the two (leaky) ends joined together

- **Inertial Confinement Fusion:**
 - Inertia holds things in place for a while ... but eventually they accelerate
 - Can inertia be used to hold the hot fusion fuel in place for long enough for the atoms to fuse?

Inertial Confinement Fusion: the basis of Laser Fusion

(Laser) Inertial Fusion

Huge inward pressure is caused by the ablation

The fusion fuel is held within a hollow spherical shell

The flueschetampled and sector and sector in the flueschetampled and sector and sector in the sector is a sector of the sector

(Laser) Inertial Fusion

The National Ignition Facility (NIF)

- Biggest laser in the world
- Size of 3 football pitches
- 192 laser beams
- Each laser pulse:
 - Energy:
 - 2.1 MJ
 - 1 Mars bar!
 - **Duration**:
 - 10 billionths of a second
 - Power:
 - 500,000,000,000,000 W
 - 1 million times global electrical power usage!

INI S IVIII VIAIIIELEI LAIYEL VIAIIIVEI Illustration Efflagetheusige NIF

High Gain 1: Reducing Energy Input by Increasing Coupling

1st demonstration of fusion energy gain

- Fusion Gain = 1.9
- Implosion gain = 15.6!
- Proven the physics works

Make fusion energy challenging

robbie.scott@stfc.ac.uk

Direct Drive

Help with **TUSION** energy

Energy Generation using Laser Fusion

Target Injector

Target Containing **Fusion Fuel**

> Laser beams in a hollow spherical shell containing the fusion fuel

Potential Advantages of Inertial Fusion Energy

- Inertial drivers enable separation between the plasma and critical infrastructure:
 - Reduced neutron damage
 - Reduced thermal damage
 - Simplified reactor maintenance
- Modular technology:
 - Driver (e.g. laser)
 - Targets
 - Target injection
 - Chamber

Enables rapid parallel development

- Reduced tritium inventory (1/10th)
- Reduced capital expenditure (potentially)

Magnetic Fusion Tokamak: complex technology is adjacent to the harsh fusion plasma and surrounds it like a Russian doll

Laser fusion: modular components are far way from fusion plasma

Lasers focus rom far away

Chamber

Laser (Inertial) Fusion Energy: Basic Energetics

- $\eta_{\text{Laser}} = 10 33\%$
- G = 30 100

Energy Efficient Lasers for Fusion

- NIF lasers are only **0.6% efficient**
 - 166 times more electricity input to the lasers than laser energy output!
 - Not feasible for power production
- Central Laser Facility:
 - DiPOLE* laser 10% efficient
 - **30x** efficiency improvement
- Next steps:
 - Cheaper
 - Higher energy
 - Increased bandwidth (more later)

*M. Divoky et al., "150 J DPSSL operating at 1.5 kW level," Opt. Lett., 46, 2021.

CLF's 100J, 10Hz, Diode-pumped 'DiPOLE' laser

- Concept: ()
 - Generate a very strong shock without very high power or intensity
 - Realise benefits of shock-ignition and central hotspot
 - Mitigate main challenges
- Method:
 - Dip in power: pre-conditions ablation plasma
 - Rise in power: launches strong shock
- Advantages (according to simulations):
 - Enhanced implosion stability vs central hotspot ignition
 - Reduced laser-plasma instabilities vs Shock Ignition
 - Increased gain vs central hotspot ignition
 - See experiments tomorrow

*Scott et al., *Physical Review Letters* (2022)

14

UK Inertial Fusion Consortium

- UK Inertial Fusion Consortium
 - Enabling collaboration: 11 UK institutions
 - Creating a common voice: ~ 90 members
 - Developing Strategy: UK Inertial Fusion Roadmap
 - Facilitating dialogue:
 - UK government: UPLiFT proposal
 - Internationally: US IFE initiative, DoE, HiPER+, Taranis
- <u>www.inertial-fusion.co.uk</u>

UK Programme: Laser Inertial Fusion Technology for Energy

HiGAIN Facility Design

Technologia a la seconda a la seconda de la se Physics: Directomine Choca Aygnabled Leasien, Hassieneeneeneeteever and number & geometry, beam smoothing, laser bandwidth, target design...

Target Manufacturing

Mass-manufacturing High quality Economic Cryogenics

Laser Drivers

Energy-efficiency (>10%) Repetition rate (10 Hz) Bandwidth (~1%) Cheap (\pounds/J)

Chamber Target survivability Neutron damage Debris clearing

UPLIFT

Target Injection & Engagement

Acceleration & accuracy Thermal Loading Tracking & beam steering

Physics, Simulations & Diagnosis

Direct Drive Shock Augmented Ignition Laser imprint Laser-plasma physics

- Laser Fusion works!
- NIF is a fantastic machine, but it was built for **science**, not **energy**
- Known science and technologies can rapidly advance Laser Fusion energy:
 - Laser efficiency & smoothing methods
 - **Advanced targets**
 - **Direct Drive** Laser Fusion
 - Advanced ignition methods such as **Shock-Augmented Ignition**
- Laser Fusion is a highly credible approach to fusion energy & an exciting field to work in
- PhDs at Universities of: York, Imperial, Oxford, Warwick, Strathclyde, Queens Belfast

17